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Physically justified boundary and conjugation conditions for problems of heat transfer in infiltrated granular
beds have been formulated within the framework of the two-temperature model that takes into account the ab-
sence of interphase interaction at the boundaries. It is shown that the classical Danckwerts conditions are ap-
plicable to a gas. The problem of filtration cooling of a heat-generating granular bed over which there is an
inert bed (pile-up) has been solved in a new statement. The dependence of the pressure drop in a granular
bed on the mass flow rate of the gas is established. A formula to calculate the maximum temperature of par-
ticles is obtained. The region of applicability of the one-temperature model is determined.

In engineering, there are a large number of thermal processes that proceed in fixed blown-through granular
beds, where temperature drops between particles and gas are to be taken into account, thus rejecting the representation
of the bed as a homogeneous heat-conducting medium. In the first place, these are various unsteady-state processes of
heating or cooling of the bed by a heat-carrier flow, when the temperatures of the phases have insufficient time to
equilibrate. Another example concerns the case of the occurrence of temperature drops in moving of a heat flux oppo-
site to the gas (transpiration cooling of the surfaces of flying vehicles, blades of high-temperature gas turbines, etc.).
Finally, mention should be made of the processes of filtration cooling of a heat-generating granular bed that can be
encountered in nuclear power plants (cooling of fuel microelements) under both standard and emergency conditions.

In order to describe the hydrodynamics and heat transfer inside a heat-generating granular bed under steady-
state conditions, the following system of equations is used:
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p = ρfRTf . (4)

The force of gas friction against particles is presented in (1) on the basis of the well-known Ergun equation [1]. The
gas is assumed to be perfect. The effective heat-conduction coefficients of the phases λf and λs are defined as [2]
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0(Tf)

 = 1 + 
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 , (5)
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where

λe

λf
0(Tf)

 = 0.03 Re (Tf) Pr (Tf) . (6)

The thermal conductivity of an ensemble of particles is

λs = λc−c + λr , (7)

where the thermal conductivity of dead zones λc−c is
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 = 12 + 0.85 Re (Ts) Pr (Ts) , (8)

and the radiant component λr [3, 4] is
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The coefficient of interphase heat transfer is determined by the formulas [5]
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Fig. 1. System of coordinates, directions of mass and heat fluxes, and the
character of distribution of the temperatures of phases and pressure inside the
granular bed.
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Since the quantities ρf, µf, and λf
0 depend on temperature and pressure, we have approximated data on the

thermophysical properties of air in the range of temperatures from 300 to 1400 K and pressures from 1 to 20 atm [6]:

ρf = 0.00352p ⁄ Tf ,   µf = 2.64⋅10
−7

T
 0.74

 ,   λf
0
 = 0.00021T

 0.84
 . (12)

An analysis of examples that demonstrate the application of system (1)–(4) to modeling concrete processes [2,
7–10] has shown that the main unsolved problem is the formulation of physically justified boundary conditions and
conjugation conditions, similar to the boundary conditions of the fourth kind that appear at the interface between dis-
perse media having different characteristics.

We will consider the process of heat transfer when a gas of temperature T0 at a pressure p0 enters a dispersed
bed of height h1, in which heat of constant power Q is released. This bed will be called active. Above this bed, there
is another bed of height h2–h1, where heat release is absent (an inert bed or "pile-up" [7]). The active and inert beds
are characterized by the quantities ε1 and d1 and ε2 and d2, respectively. In the process of filtration, the gas moves
through the beds, gets heated as a result of heat transfer, and outflows into a free space at a pressure patm (Fig. 1).
We will formulate the boundary and conjugation conditions at the active bed–inert bed interface.

Boundary Conditions. 1. Boundary condition at x = 0 (gas). We will consider an elementary volume of the
active bed dV = Sdx near the interface x = 0 (Fig. 2). The balance of the gas heat fluxes is

(q1 − q0) S = α1 (Ts1 − Tf1) dSin . (13)

With allowance for dSin = SindV = SinSdx, we obtain

q1 − q0 = α1 (Ts1 − Tf1) Sindx . (14)

When dx → 0, Eq. (14) yields the unknown boundary condition

q1 = q0 . (15)

Since q0 = cpρf0uf0T0′ and q1 = cpρf1uf1Tf1′ (0) − ε1λf1 
dTf1
dx



x=0

, boundary condition (15) at x = 0 takes the
form

cp 
Jf

ε1
 (Tf1 − T0

 ′) = λf1 
dTf1
dx

 . (16)

Fig. 2. Toward the derivation of the boundary condition for the gas at x = 0.
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Equation (16) is the well-known Danckwerts condition [11] widely used in modeling the processes of transfer in
granular beds which are considered as homogeneous media. In this connection, the following conclusion can be drawn,
which is important in the context of the present work: in formulating boundary conditions for the two-temperature
model, the phases at the boundaries of the bed can be considered as isolated from each other because of the absence
of the interface surface there.

2. Boundary condition at x = 0 (particles). With allowance for the transfer of the heat that enters the system
together with the gas (preliminary heating) (Fig. 1), the boundary condition at x = 0 has the form

λs1 (1 − ε1) 
dTs1
dx

 = α0 (Ts1 − T0) . (17)

Using the relation λs1(1 − ε1)
dTs1

dx



x=0

 = cpJf(T0′  − T0), we rearrange Eq. (16) as

cpJf (Tf1 − T0) = ε1 λf1 
dTf1

dx
 + (1 − ε1)  λs1 

dTs1
dx

 . (18)

3. Boundary condition at x = h2 (gas). With allowance for the independence of the phases, we may use the
second Danckwerts condition

dTf2

dx
 = 0 , (19)

which states that the entire heat flux transferred by the gas is equal to the convective one. We note that the hypothesis

Ts2 = Tf2 , (20)

adopted in [9] disagrees with (19).
4. Boundary condition at x = h2 (particles). At the absence of a heat flux from the outside, we have

dTs2

dx
 = 0 . (21)

In [7], Eq. (21) is replaced by the equation

λs2 
dTs2

dx
 = α2 (Tf2 − Ts2) ,

(22)

which, as the foregoing analysis has shown, seems to be erroneous.
Conjugation Conditions (x = h1). 1. Conjugation condition for pressure. To obtain the sought-after condi-

tion, we use Eq. (1). With allowance for Jf = ερfvf = const, we have
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We will integrate Eq. (23) within the limits h1 − ∆x, h1 + ∆x:

     ∫ 
h1−∆x

h1+∆x

  d (Jfvf + p) = −    ∫ 
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h1+∆x

   

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




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When ∆x → 0, Eq. (24) yields the conjugation condition for pressure:

∆p = p2 − p1 = Jf (vf1 − vf2) . (25)
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We note that when ∆x → 0, the integral on the right-hand side of Eq. (24) also tends to zero, since it contains

the expression for the interface surfaces 
∆Si

S
 = 

6 (1 − εi)
di

 ∆x. In [10], for ∆p a somewhat different formula was sug-

gested:

∆p = 
Jf1

ε1
 (vf1 − vf2) , (26)

which does not satisfy the needed symmetry condition.
2. Conjugation conditions for the gas temperatures and their derivatives. We will use Eq. (2) representing the

gas enthalpy as If = cpTf = cvTf + 
p
ρf

:

d 


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
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d

 (Ts − Tf) dx . (27)

Having performed, as before, the integration of Eq. (27), for ∆x → 0 we obtain

Jfcv (Tf1 − Tf2) + Jf 



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ρf1
 − 

p2

ρf2




 = ε1λf1 
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 − ε2λf2 
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 . (28)

As is seen, relation (28) represents the conservation condition for the total heat flux of the gas, which can be written
in the form

Jfcp (Tf1 − Tf2) = ε1λf1 
dTf1

dx
 − ε2λf2 

dTf2

dx
 . (29)

Subject to cp − cv = R, a comparison of Eqs. (28) and (29) yields the sought-after condition for the tempera-
ture jump:

∆Tf = Tf1 − Tf2 = 




p2

ρf2
 − 

p1

ρf1




 
1

R
 . (30)

We note that condition (30) is also determined from the equation of state of the ideal gas (4). Substituting ∆Tf into
Eq. (29), we obtain the condition for the jump of the derivatives:

ε2λf2 
dTf2

dx
 − ε1λf1 

dTf1
dx

 = Jfcp∆Tf = 
Jfcp

R
 




p2

ρf2
 − 

p1

ρf1




 . (31)

In [10], somewhat different, more complex, expressions were obtained instead of Eqs. (30) and (31), which do not sat-
isfy the symmetry condition.

3. Conjugation conditions for the temperatures of particles and their derivatives. It is evident that these are
the conventional boundary conditions of the IVth kind:

Ts1 = Ts2 ,   (1 − ε1) λs1 
dTs1

dx
 = (1 − ε2) λs2 

dTs2
dx

 . (32)

We will write system (1)–(4) with boundary conditions (16), (17), (19), and (21) and conjugation conditions (25),
(30)–(32) in dimensionless form:
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(i = 1, the active bed with 0 ≤ ξ < ξ1; i = 2, the inert bed with ξ1 ≤ ξ ≤ 1).
The boundary conditions are

p1
′  (0) = 1 ,   p2

′ (1) = 0 ; (37)

ξ = 0 :   θf1 = 
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ξ = 1 :   
dθf2
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The conjugation conditions (ξ = ξ1) are
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 = ∆θf , (42)

θs1 = θs2 ,   
dθs1

dξ
 = Λ 

dθs2

dξ
 . (43)

Subject to relations (12), the conductive components in heat-transfer equations (34) and (35) are
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We note that, according to the recommendations given in [12], the coefficient of interphase heat transfer de-
fined by Eqs. (10) and (11) is calculated at a temperature (Tsi + Tfi)/2. With allowance for the Reynolds analogy [13],
the viscosities µfi entering into Rei (Eq. (33)) are also calculated at the same temperature.

Analysis of the Results Obtained. Figures 3–5 present the dependences of Ts, Tf, and ∆p = p − patm on the
coordinate x (ξ) that were obtained as a result of solving Eqs. (33)–(36) with the corresponding boundary conditions
for different mass fluxes of heat carriers, diameters of particles, and heights of granular beds (in all cases ε1 = ε2 =
ε = 0.4; d1 = d2; h1 = h2/2). The release of heat in the active zone leads to a substantial dependence of the tempera-
tures of the gas and particles on the characteristics of this zone Q and h1. The value of the gas temperature at the exit
from the system is easily determined from the balance relation

Fig. 3. Dependence of Ts, Tf, and ∆p on the dimensionless coordinate ξ (Q =
5⋅107 W/m3): a) h2 = 0.01 m, d = 0.001 m; b) 0.1 and 0.001; c) 0.1 and
0.003.
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cpJf (Tf2 (h2) − T0) = Q (1 − ε1) h1 , (46)

which for the dimensionless quantity θf2 (1) yields the simple equation

θf2 (1) = Q
�

 
h1

h2
 . (47)

In practice, of great value is estimation of the maximum temperature of particles which is attained in the re-
gion x C h1. To calculate this value, the following approximation was obtained:

θs,max − θf2 (1) = 0.31Q
�  0.16

 Q
�

2
 0.43

 , (48)

Fig. 4. Dependence of Ts and Tf on the coordinate x (Q = 5⋅103 W/m3; d1 =
d2 = 1⋅10−3 m, Jf = 1 kg/(m2⋅sec)): 1, 2, 3, and 4) h2 = 0.01, 0.0193, 0.0373,
and 0.072, respectively.

Fig. 5. Comparison between the solutions of different approximations of system

(1)–(4) (Q = 5⋅109 W/m3, d1 = d2 = 1⋅10−3 m, h2 = 0.01 m, Jf = 1

kg/(m2⋅sec)): 1) zero approximation (λs and λf, constants at T0); 2) first ap-

proximation (conductive terms in (2) and (3); i.e., ελf(Tf)
d2Tf

dx2  and (1 − ε)λs(Ts)

d2Ts

dx2
 without allowance for radiation); 3) second approximation (conductive

terms in (2) and (3); i.e., 
d
dx



ελf(Tf)

dTf

dx



 and 

d
dx



(1 − ε)λs(Ts)

dTs

dx



 without al-

lowance for radiation); 4) "exact" solution of system (1)–(4).
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which takes into account the influence exerted on θs,max by the main factors Q, d, h1, and Jf. The pressure drop in a
granular bed may attain great values. The calculated dependence has the form

D0 = 0.022ε−5.7
 Re0

1.55
 + 0.006ε−1.85

 Re0
2.3
 Q
�  0.42

 . (49)

We note that by its structure Eq. (49) resembles Eq. (33). The influence of heat release (temperature factor)
leads to a certain transformation of exponents at Re0. We will analyze the active zone-average relative difference in
the temperatures of phases η = s2(Ts − Tf)/(Ts + Tft). To calculate this value, the following expression was obtained:

η = 0.25Q
�

2
 0.73

 . (50)

It is evident that the parameter η characterizes the applicability of the two-temperature model and the complex Q
�

2
makes it possible to determine the fields of applicability of the one- and two-temperature models. If we take η = 0.01,
then it is seen from Eq. (50) that for Q

�

2 < 0.01 the one-temperature model can be used:

cp ρfεvf 
dT
dx

 = 
d
dx

 

λeff 

dT
dx



 + Q (1 − ε) , (51)

which follows from (2) and (3) at Ts C Tf. The effective thermal-conductivity coefficient of the blown-through dis-
persed medium is calculated from the formula

λeff = ελf + (1 − ε) λs . (52)

When Q
�

2 > 0.01, it is necessary to take into account the difference between the temperatures of phases and apply Eqs.
(2) and (3).

Figure 4 shows the behavior of temperatures Ts and Tf at different heights of a granular bed. As is seen, the

values of the temperatures of phases for beds with different h2 are strictly coordinated and form a single set. Figure 5

presents the results of comparison between the solutions of different approximations of system (1)–(4) that reflect the
influence of radiation and of the nonlinearity of Eqs. (2) and (3) on the temperatures of phases and pressure. As is
seen, Ts, Tf, and p found as a result of the "exact" solution of system (1)–(4) agree satisfactorily with the values ob-

tained from an approximate solution (the conductive terms in Eqs. (2) and (3) are represented as ελf 
d2Tf

dx2  and

(1 − ε)λs(Ts)
d2Ts

dx2
 without allowance for radiation). It is difficult to explain this result qualitatively because of the com-

plexity of Eqs. (1)–(4). Nevertheless, this is a certain justification of the practical use of the simplified heat-conduction

equations of phases with variable coefficients λf and λs without allowance for radiation heat transfer.

In conclusion, we note that approximating dependences (48), (49), and (50) were obtained for the following
ranges of dimensionless parameters: 27.7 ≤ Re0 ≤ 16,610, 0.0013 ≤ Q

�

 ≤ 9.94, 3.3⋅10−7 ≤ Q
�

2 ≤ 0.09, and 59 ≤ D0 ≤
8.7⋅107.

NOTATION

cp and cv, specific heat capacities of gas at constant volume and pressure, respectively, J/(kg⋅K); d and di, di-

ameters of particles, m; Di = ((p0 − patm)/h2)di
3ρfi/µfi

2; D0 = ((p0 − patm)/h2)d1
3ρf0/µf0

2 ; h1, height of the active (heat-gen-

erating) bed, m; h2, total height of a granular bed, m; Jf = ρfiεivfi, mass flow rate of gas, kg/(m2⋅sec); J
�

i =

Jf
2di

3/(εih2µfi
2); J

� ∗ = Jf
2/(p0 − patm)ρf0; Pe0 = cpJfd1/6α0h2(1 − ε1), Pei = cpJfdi/(6αih2(1 − εi)), Pefi = cpJfh2/(εiλfi), Pesi =

cpJfh2/[(1 − εi)λsi], Péclet numbers; Pr, Prandtl number; pi, pressure, Pa; p0, pressure at inlet into a granular bed, Pa;
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∆p = p − patm; pi′ = (pi − patm)/(p0 − patm); q, q0, and q1, heat fluxes, W/m2; Q, heat-generation power, W/m3; Q
�

 =

Q(1 − ε1)h2/(cpJfT0); Q
�

2 = Q(1 − ε1)d/(cpJfT0); Rei = Jfdi/µfi and Re0 = Jfd1/µf0, Reynolds numbers; R, gas constant,

m2/(sec2⋅K); S, cross section of a bed, m2; Sin, specific surface of particles (interphase surface per unit volume of bed)

in the case of a packing of spheres Sin = 6(1 − ε)/d, m2 ⁄ m3; Tfi and Tsi, temperature of gas and particles, K; T0, inlet

gas temperature, K; T0′, gas temperature for x → −0, K; vfi, gas velocity in the interstices between particles, m/sec;

ufi, gas-filtration velocity, m/sec; x, coordinate, m; α0, heat-transfer coefficient, W/(m2⋅K); α0 = 0.5cpJfRe−0.5Pr−0.6 [9],

W/(m2⋅K); α, coefficient of interphase heat transfer, W/(m2⋅K); δ1i, Kronecker symbol; ε, porosity; θfi = (Tfi − T0)/T0

and θsi = (Tsi − T0)/T0, dimensionless temperatures of gas and particles; κ, absorption coefficient of dispersed medium,

1/m; λf
0, molecular thermal conductivity of gas, W/(m⋅K); Λ = 

(1 − ε2)λs2

(1 − ε1)λs1
; λfi and λsi, effective thermal conductivities

of gas and particles, W/(m⋅K); λe, eddy heat-conduction coefficient, W/(m⋅K); µfi, dynamic viscosity of gas,

kg/(m⋅sec); µf0, dynamic viscosity of gas at atmospheric pressure and temperature T0, kg/(m⋅sec); ξ = x/h2, ξ1 =

h1
 ⁄ h2; ρf, gas density, kg/m3; ρfi′  = ρfi/ρf0; ρf0, gas density at atmospheric pressure and temperature T0, kg/m3; σ,

scattering coefficient of dispersed medium, 1/m. Superscript: 0, molecular. Subscripts: atm, atmospheric; c-c, conduc-
tive-convective; e, eddy; eff, effective; f, fluid (gas); in, interphase; i, number of a granular bed; max, maximum; 0, at
the inlet; p, at constant pressure; r, radiant; s, solid particles; v, at constant volume.
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